Natural scene classification using overcomplete ICA

نویسندگان

  • Jiebo Luo
  • Matthew R. Boutell
چکیده

Principal component analysis (PCA) has been widely used to extract features for pattern recognition problems such as object recognition [Turk and Pentland, J. Cognitive Neurosci. 3(1) (1991)]. In natural scene classification, Oliva and Torralba presented such an algorithm in Oliva and Torralba [Int. J. Comput. Vision 42(3) (2001) 145–175] for representing images by their “spatial envelope” properties, including naturalness, openness, and roughness. Our implementation closely matched the original algorithm in accuracy for naturalness classification (or “manmade–natural” classification) on a similar (Corel) dataset. However, we found that consumer photos, which are far more unconstrained in content and imaging conditions, present a greater challenge for the algorithm (as they typically do for image understanding algorithms). In this paper, we present an alternative approach to more robust naturalness classification, using overcomplete independent components analysis (ICA) directly on the Fourier-transformed image to derive sparse representations as more effective features for classification. Using both heuristic and support vector machine classifiers, we demonstrated that our ICA-based features are superior to the PCAbased features used in Oliva and Torrabla [Int. J. Comput. Vision 42(3) (2001) 145–175]. In addition, we augment ICA-based features with camera metadata related to image capture conditions to further improve the performance of our algorithm. 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Methods for Estimating Overcomplete Independent Component Bases

Estimating overcomplete ICA bases is a difficult problem that emerges when using ICA on many kinds of natural data, e.g. image data. Most algorithms are based on approximations of the likelihood, which leads to computationally heavy procedures. Here we introduce two algorithms that are based on heuristic approximations and estimate an approximate overcomplete basis quite fast. The algorithms ar...

متن کامل

Two Approaches to Estimation of Overcomplete Independent Component Bases

Estimating overcomplete ICA bases is a difficult problem that emerges when using ICA on many kinds of natural data. Here we introduce two algorithms that estimate an approximate overcomplete basis quite fast in a high-dimensional space. The first algorithm is based on an assumption that the basis vectors are randomly distributed in the space, and the second on the gaussianization procedure.

متن کامل

Overcomplete topographic independent component analysis

Topographic and overcomplete representations of natural images/videos are important problems in computational neuroscience. We propose a new method using both topographic and overcomplete representations of natural images, showing emergence of properties similar to those of complex cells in primary visual cortex (V1). This method can be considered as an extension of model in Hyvärinen et al. [T...

متن کامل

On degeneracy control in overcomplete ICA

Understanding the effects of degeneracy control mechanisms when learning overcomplete representations is crucial for applying Independent Components Analysis (ICA) in machine learning and theoretical neuroscience. A number of approaches to degeneracy control have been proposed which can learn non-degenerate complete representations, however some of these methods can fall into bad local minima w...

متن کامل

A Null-space Algorithm for Overcomplete Independent Component Analysis

Independent component analysis (ICA) is an important method for blind source separation and unsupervised learning. Recently, the method has been extended to overcomplete situation where the number of sources is greater than the number of receivers. Comparing complete ICA and overcomplete ICA in existing literature, one can notice that complete ICA does not assume noise in observations, and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2005